Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Nat Commun ; 14(1): 5654, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704629

ABSTRACT

Peptide-based therapeutics have gained attention as promising therapeutic modalities, however, their prevalent drawback is poor circulation half-life in vivo. In this paper, we report the selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SNAr chemistry, with decafluoro-diphenylsulfone (DFS). Testing of the binding of the selected peptides to albumin identified SICRFFC as the lead sequence. We replaced DFS with isosteric pentafluorophenyl sulfide (PFS) and the PFS-SICRFFCGG exhibited KD = 4-6 µM towards human serum albumin. When injected in mice, the concentration of the PFS-SICRFFCGG in plasma was indistinguishable from the reference peptide, SA-21. More importantly, a conjugate of PFS-SICRFFCGG and peptide apelin-17 analogue (N3-PEG6-NMe17A2) showed retention in circulation similar to SA-21; in contrast, apelin-17 analogue was cleared from the circulation after 2 min. The PFS-SICRFFC is the smallest known peptide macrocycle with a significant affinity for human albumin and substantial in vivo circulation half-life. It is a productive starting point for future development of compact macrocycles with extended half-life in vivo.


Subject(s)
Albumins , Serum Albumin, Human , Humans , Animals , Mice , Apelin , Serum Albumin, Human/genetics , Angiotensin II , Cysteine , Sulfides
3.
Bioconjug Chem ; 34(8): 1477-1485, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37523271

ABSTRACT

The design of imaging agents with high fluorine content is essential for overcoming the challenges associated with signal detection limits in 19F MRI-based molecular imaging. In addition to perfluorocarbon and fluorinated polymers, fluorinated peptides offer an additional strategy for creating sequence-defined 19F magnetic resonance imaging (MRI) imaging agents with a high fluorine signal. Our previously reported unstructured trifluoroacetyllysine-based peptides possessed good physiochemical properties and could be imaged at high magnetic field strength. However, the low detection limit motivated further improvements in the fluorine content of the peptides as well as removal of nonspecific cellular interactions. This research characterizes several new highly fluorinated synthetic peptides composed of highly fluorinated amino acids. 19F NMR analysis of peptides TB-1 and TB-9 led to highly overlapping, intense fluorine resonances and acceptable aqueous solubility. Flow cytometry analysis and fluorescence microscopy further showed nonspecific binding could be removed in the case of TB-9. As a preliminary experiment toward developing molecular imaging agents, a fluorinated EGFR-targeting peptide (KKKFFKK-ßA-YHWYGYTPENVI) and an EGFR-targeting protein complex E1-DD bioconjugated to TB-9 were prepared. Both bioconjugates maintained good 19F NMR performance in aqueous solution. While the E1-DD-based imaging agent will require further engineering, the success of cell-based 19F NMR of the EGFR-targeting peptide in A431 cells supports the potential use of fluorinated peptides for molecular imaging.


Subject(s)
Fluorine , Magnetic Resonance Imaging , Fluorine/chemistry , Magnetic Resonance Spectroscopy , Peptides , ErbB Receptors
5.
Org Lett ; 22(10): 3946-3950, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32347732

ABSTRACT

1,4-Thiazepanes and 1,4-thiazepanones represent seven-membered ring systems with highly 3D character and are currently underrepresented in fragment screening libraries. A nuclear magnetic resonance (NMR) fragment screen identified 1,4-acylthiazepanes as new BET (bromodomain and extraterminal domain) bromodomain ligands; however, an efficient and readily diversified synthesis for library development has not been reported. Here we report a one-pot synthesis using α,ß-unsaturated esters and 1,2-amino thiols to form 1,4-thiazepanones as precursors to 1,4-thiazepanes with high 3D character. This reaction proceeds in reasonable time (0.5-3 h) and in good yield and tolerates a broad scope of α,ß-unsaturated esters. Several 1,4-thiazepanes were synthesized by a two-step transformation and were characterized as new BET bromodomain ligands using protein-observed 19F NMR. This synthesis should provide ready access to diverse 3D fragments for screening libraries.


Subject(s)
Esters/chemistry , Proteins/chemistry , Drug Discovery , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure , Protein Domains , Small Molecule Libraries/chemistry
6.
ACS Med Chem Lett ; 10(12): 1648-1654, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31857841

ABSTRACT

Fragment-based ligand discovery has been successful in targeting diverse proteins. Despite drug-like molecules having more 3D character, traditional fragment libraries are largely composed of flat, aromatic fragments. The use of 3D-enriched fragments for enhancing library diversity is underexplored especially against protein-protein interactions. Here, we evaluate using 3D-enriched fragments against bromodomains. Bromodomains are highly ligandable, but selectivity remains challenging, particularly for bromodomain and extraterminal (BET) family bromodomains. We screened a 3D-enriched fragment library against BRD4(D1) via 1H CPMG NMR with a protein-observed 19F NMR secondary assay. The screen led to 29% of the hits that are selective over two related bromodomains, BRDT(D1) and BPTF, and the identification of underrepresented chemical bromodomain inhibitor scaffolds. Initial structure-activity relationship studies guided by X-ray crystallography led to a ligand-efficient thiazepane, with good selectivity and affinity for BET bromodomains. These results suggest that the incorporation of 3D-enriched fragments to increase library diversity can benefit bromodomain screening.

7.
Acc Chem Res ; 52(12): 3407-3418, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31718149

ABSTRACT

Inhibitor discovery for protein-protein interactions has proven difficult due to the large protein surface areas and dynamic interfaces involved. This is particularly the case when targeting transcription-factor-protein interactions. To address this challenge, structural biology approaches for ligand discovery using X-ray crystallography, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy have had a significant impact on advancing small molecule inhibitors into the clinic, including the U.S. Food and Drug Administration approved drug, Venetoclax. Inspired by the protein-observed NMR approach using 1H-15N-HSQC NMR which detects chemical shift perturbations of 15N-labeled amides, we have applied a complementary protein-observed 19F NMR approach using 19F-labeled side-chains that are enriched at protein-protein-interaction interfaces. This protein-observed 19F NMR assay is abbreviated PrOF NMR to distinguish the experiment from the more commonly employed ligand-observed 19F NMR methods. In this Account, we describe our efforts using PrOF NMR as a ligand discovery tool, particularly for fragment-based ligand discovery (FBLD). We metabolically label the aromatic amino acids on proteins due to the enrichment of aromatic residues at protein interfaces. We choose the 19F nucleus due to its high signal sensitivity and the hyperresponsiveness of 19F to changes in chemical environment. Simultaneous labeling with two different types of fluorinated aromatic amino acids for PrOF NMR has also been achieved. We first describe the technical aspects of considering the application of PrOF NMR for characterizing native protein-protein interactions and for ligand screening. Several test cases are further described with a focus on a transcription factor coactivator interaction with the KIX domain of CBP/p300 and two epigenetic regulatory domains, the bromodomains of BRD4 and BPTF. Through these case studies, we highlight medicinal chemistry applications in FBLD, selectivity screens, structure-activity relationship (SAR) studies, and ligand deconstruction approaches. These studies have led to the discovery of some of the first inhibitors for BPTF and a novel inhibitor class for the N-terminal bromodomain of BRD4. The speed, ease of interpretation, and relatively low concentration of protein needed for NMR-based binding experiments affords a rapid, structural biology-based method to discover and characterize both native and new ligands for bromodomains, and it may find utility in the study of additional epigenetic proteins and transcription-factor-protein interactions.


Subject(s)
Magnetic Resonance Spectroscopy , Proteins/chemistry , Proteins/metabolism , Amino Acid Sequence , Humans , Structure-Activity Relationship
8.
Org Biomol Chem ; 17(7): 2020-2027, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30706071

ABSTRACT

Bromodomain and PHD finger containing protein transcription factor (BPTF) is an epigenetic protein involved in chromatin remodelling and is a potential anticancer target. The BPTF bromodomain has one reported small molecule inhibitor (AU1, rac-1). Here, advances made on the structure-activity relationship of a BPTF bromodomain ligand are reported using a combination of experimental and molecular dynamics simulations leading to the active enatiomer (S)-1. Additionally, a ligand deconstruction analysis was conducted to characterize important pharmacophores for engaging the BPTF bromodomain. These studies have been enabled by a protein-based fluorine NMR approach, highlighting the versatility of the method for selectivity, ligand deconstruction, and ligand binding. To enable future analysis of biological activity, cell growth analyses in a panel of cancer cell lines were carried out using CRISPR-Cas9 and (S)-1 to identify cell-based model systems that are sensitive to BPTF inhibition.


Subject(s)
Nerve Tissue Proteins/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Antigens, Nuclear , Cell Proliferation , Crystallography, X-Ray , Humans , Ligands , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
9.
Stem Cell Reports ; 9(1): 23-31, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28579392

ABSTRACT

Chromatin remodeling is a key requirement for transcriptional control of cellular differentiation. However, the factors that alter chromatin architecture in mammary stem cells (MaSCs) are poorly understood. Here, we show that BPTF, the largest subunit of the NURF chromatin remodeling complex, is essential for MaSC self-renewal and differentiation of mammary epithelial cells (MECs). BPTF depletion arrests cells at a previously undefined stage of epithelial differentiation that is associated with an incapacity to achieve the luminal cell fate. Moreover, genome-wide analysis of DNA accessibility following genetic or chemical inhibition, suggests a role for BPTF in maintaining the open chromatin landscape at enhancers regions in MECs. Collectively, our study implicates BPTF in maintaining the unique epigenetic state of MaSCs.


Subject(s)
Antigens, Nuclear/metabolism , Cell Proliferation , Chromatin/metabolism , Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Nerve Tissue Proteins/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Animals , Antigens, Nuclear/genetics , Cell Differentiation , Cells, Cultured , Chromatin/genetics , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Epithelial Cells/metabolism , Female , Gene Expression Regulation, Developmental , Mammary Glands, Animal/metabolism , Nerve Tissue Proteins/genetics , Stem Cells/metabolism , Transcription Factors/genetics
10.
Angew Chem Int Ed Engl ; 56(23): 6440-6444, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28471097

ABSTRACT

19 F MRI is valuable for in vivo imaging due to the only trace amounts of fluorine in biological systems. Because of the low sensitivity of MRI however, designing new fluorochemicals remains a significant challenge for achieving sufficient 19 F signal. Here, we describe a new class of high-signal, water-soluble fluorochemicals as 19 F MRI imaging agents. A polyamide backbone is used for tuning the proteolytic stability to avoid retention within the body, which is a limitation of current state-of-the-art perfluorochemicals. We show that unstructured peptides containing alternating N-ϵ-trifluoroacetyllysine and lysine provide a degenerate 19 F NMR signal. 19 F MRI phantom images provide sufficient contrast at micromolar concentrations, showing promise for eventual clinical applications. Finally, the degenerate high signal characteristics were retained when conjugated to a large protein, indicating potential for in vivo targeting applications, including molecular imaging and cell tracking.


Subject(s)
Fluorine/chemistry , Intrinsically Disordered Proteins/chemistry , Magnetic Resonance Imaging/methods , Peptides/chemical synthesis , Circular Dichroism , Halogenation , Hydrocarbons, Fluorinated/chemistry , Peptides/chemistry , Protein Structure, Secondary , Proteolysis , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...